palantir.workflow.Observable

class palantir.workflow.Observable(parent, key, label)

A class for any element to monitor. A workflow can be the monitoring of several observables

__init__(parent, key, label)

Methods

__init__(parent, key, label)

buildRelativeTrace(f, outputNature, ...[, ...])

buildRolledTrace(f, outputNature, ...)

buildTraceFromFilterSet(FullData, ...[, ...])

delimitTimeChunk(timeChunk)

Fits the timeChunk time interval to the observable's time interval

doFiltering(mjd, y, timeChunk)

doReporting(secondsBetweenOutputs, outputNature)

getAllanDeviation(key, method)

getMean(key)

getMjd([key])

getParentWorkflow()

getPathToFilters()

getRelativeUptime(startMjd, endMjd)

getReport(key)

getReports(startMjd, endMjd)

getSecondsBetweenOutputs()

getTimeRangeSeconds()

getTitleDates()

Gets the human-readable date interval

getTrace([key])

getUncertainty(key)

getUptime(key)

getWebState([quality0, quality1, forceState])

Get a single webState from a set of data (stages)

getXlabel()

Gets a default time x-axis label for basic plots

hasBeenProcessed()

hasEnoughPoints()

isDeterministic([context])

isOperational()

Based on the mesurands involved in the observable, define if it should be operational or not.

loadDefaultFilters(start, end)

loadDefaultTimeChunk()

plotAllTemplates([save, baseSavePath, suffix])

Plots template pages for each filtering stage

plotDevAdditionalData([method, stageKey])

Plot additional data to the deviation plot

plotDeviation([stageKey, method, linestyle, ...])

plotDistribution([stageKey, orientation, nbins])

plotDistributionAdditionalData(stageKey)

Plot additional data to the distribution plot

plotFilters([stages])

Parameters stages [int], optional List of filtering methods IDs to plot. The default is [].

plotPhase([stageKey])

Plots template pages for each filtering stage

plotQuickview([stages, plotRange])

plotTemplatePage(stageKey[, save, savePath, ...])

plotTrace([stageKey])

plotTraceAdditionalData(stageKey)

Plot additional data to the trace plot

processChunkedData(FullData, mesurandModel, ...)

processFullData(FullData, mesurandModel[, ...])

Parameters filterSets: list[dict]

processMeasurementsUptime(...)

setTimeChunk(timeChunk)

timeIntervalIsLargeEnough()